
Processing Constrained k-Closest Pairs Queries
in Crime Databases

Shaojie Qiao, Changjie Tang, Huidong Jin, Shucheng Dai, Xingshu Chen,
Michael Chau, and Jian Hu

Abstract Recently, spatial analysis in crime databases has attracted increased
attention. In order to cope with the problem of discovering the closest pairs of
objects within a constrained spatial region, as required in crime investigation appli-
cations, we propose a query processing algorithm called Growing Window based
Constrained k-Closest Pairs (GWCCP). The algorithm incrementally extends the
query window without searching the whole workspace for multiple types of spatial
objects. We use an optimized R-tree to store the index entities and employ a density-
based range estimation approach to approximate the query range. We introduce a
distance threshold with regard to the closest pair of objects to prune tree nodes in
order to improve query performance. Experiments discuss the effect of three impor-
tant factors, i.e., the portion of overlapping between the workspaces of two data
sets, the value of k, and the buffer size. The results show that GWCCP outperforms
the heap-based approach as a baseline in a number of aspects. In addition, GWCCP
performs better within the same data set in terms of time and space efficiency.

Shaojie Qiao
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031;
Southwest Jiaotong University
e-mail: qiaoshaojie@gmail.com

Changjie Tang, Shucheng Dai, Xingshu Chen, Jian Hu∗
School of Computer Science, Sichuan University, Chengdu 610065, China
e-mail: {cjtang,daishucheng,chenxsh}@scu.edu.cn;
∗hujianlucky@163.com
Huidong Jin
Mathematical and Information Sciences, CSIRO, ACT 2601, Australia
e-mail: warren.jin@csiro.au

Michael Chau
School of Business, The University of Hong Kong, Pokfulam, Hong Kong, SAR
e-mail: mchau@business.hku.hk

An earlier version of the paper received the best paper award at the IEEE International Conference
on Intelligence and Security Informatics 2008.

59C.C. Yang et al. (eds.), Security Informatics, Annals of Information Systems 9,
DOI 10.1007/978-1-4419-1325-8_4, C© Springer Science+Business Media, LLC 2010

60 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

Keywords Spatial analysis · Crime databases · Constrained closest pairs · Query
processing · R-tree

1 Introduction

Crime databases have developed into an important tool in crime investigate appli-
cations. In general, a “crime database” is defined as a spatial database that stores
incident-based data focusing on the unique characteristics of a criminal incident that
captures detailed crime characteristics, e.g., location, modus operandi, and time [1].
The locations of crime incidents illustrated in a crime-based map are represented by
2D points or 3D geometric entities.

Query processing for crime data has recently become popular, since the tragic
events of September 11 and the subsequent anthrax contamination of letters pro-
duced a great effect on many aspects of society [2]. Crime investigators and
anti-terrorism specialists typically maintain a spatial database storing the locations,
distances, time, and other relevant information of crimes. For example, given the
description of a fat suspect with long beard, a round face, and brown hair, an inves-
tigator is apt to find the closest pairs of spatial objects such as subways and airports
where this criminal frequently visits. It is of practical value for law enforcement
agencies to develop an efficient spatial query processing method in crime databases
for predicting the potential crimes and preventing future crimes.

In addition, crime authorities can employ crime databases to allocate new facil-
ities more appropriately. For instance, emergency calls to an emergency call center
are dialed from various locations. For each call, a staff can generate a spatial event
associated with an accident and dispatch ambulances to the scene of accident that
is nearest to them. Another example is that the police station of New York City
used its GIS to locate facilities and to respond to emergencies such as the attack on
the World Trade Centers, in which location-based service plays an essential role in
response and recovery efforts [3].

As for security domain, it is important to discover the closest pairs of multi-
ple types of objects (i.e., objects derived from distinct spatial data sets) in crime
databases. For example, a policeman may need to find one or multiple closest pairs
of roads and crime scenarios, instead of the closest pairs of roads, in an efficient and
effective manner.

A very common spatial query is the “k-Nearest Neighbor Query” (kNN) [4].
For example, a staff may want to find the k (k≥1, is the number of nearest neigh-
bors) police officers closest to a crime scenario where a crime with k injured people
occurred. The problem of “k-Closest Pairs Query” (k-CPQ) is an extension by com-
bining nearest neighbor query with spatial join in order to find the k-closest pairs
of spatial objects from two distinct data sets [5]. For example, anti-terrorist officers
may be interested in finding the closest five supermarkets and banks, or the closest
four bus stops and railways.

Processing Constrained k-Closest Pairs Queries 61

In this study, the k-CPQ with a spatial constraint is called constrained k-
closest pairs query (k-CCPQ) [6]. This problem is of great practical value when
applied to the security informatics domain of crime databases due to the following
reasons.

• Typically, police officers often care for the query results within a given area which
can help save query time instead of the whole space in the real-life scenarios.

• k-CCPQs may ask for k-closest pairs of any two types of objects. It is more appro-
priate for crime databases, since crime databases consist of multiple types of
objects. For instance, the k-CCPQs in crime databases discovering the k pairs of
subways and police departments resort to find the kshortest distances so that the
police officer can efficiently dispatch police officers to the subways which are
the possible targets of terrorist attack. In other words, it can assist in making an
optimal allocation of police resources.

In order to solve the k-CCPQ problem in crime databases, we make the following
contributions in this study:

1. We propose a novel constrained k-closest pairs query processing algorithm based
on growing windows in crime databases, namely GWCCP. The window extends
incrementally and terminates when discovering the k-CCPQs, which help elim-
inate the unnecessary distance calculations between spatial objects of crime
incidents or other point locations.

2. We employ an optimized R-tree index structure to store the index entities and
treat the distance of the maintained closest pair as a threshold. The closest pair
whose distance is greater than this threshold is pruned which benefits reducing
the response time of tracing criminals.

3. We use a density-based range estimation method to compute the square query
range. It has some advantages. First, the space required to store the density infor-
mation takes only several bytes. Second, every time a new range estimate is
required, it is derived from the density of the previous window for query.

4. We conduct experiments to compare the proposed approach with the heap-based
algorithm for k-CCPQ over two distinct crime data sets, and the results show
that our algorithm performs well in most cases. In particular, the performance of
GWCCP is better than SRCP-tree [7] within the same data set.

The rest of this chapter is organized as follows. Section 2 surveys the related
work. Section 3 describes the problem of k-CCPQ and presents some useful metrics.
Section 4 introduces the density-based range estimation method and proposes the
algorithm of k-CCPQ query. Section 5 presents the performance studies of the pro-
posed algorithm and discusses the experimental results. Finally, Section 6 concludes
this chapter with a summary and directions for future work.

62 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

2 Related Work

The closest pairs query problem has unleashed a new wave of applications in the
research of spatial databases [4–6]. However, there is relatively little work that is
relevant to the closest pairs query processing problem in crime databases that is
important to the security informatics domain.

Much work on the closest pair query problem focuses on applying R-tree to kNN
queries, because R-tree is an efficient spatial index structure of retrieving data items
based on the location of each object [8].

Roussopoulos [9] proposed an R-tree algorithm for kNN queries. The disadvan-
tage of the algorithm is that once a node is visited, all nodes in its sub-tree have to
be visited as well.

To avoid direct accesses to spatial indices, Liu et al. [10] transformed a kNN
query into more window queries.

Hjaltason and Samet [11] proposed two spatial join operations between two
R-tree indices. However, the approach is still required to store every pair of index
entries and spatial objects in a priority queue. Thus, it still cannot avoid a large
number of disk accesses.

Corral proposed an improved approach known as the Heap algorithm [4]. But,
this approach is not efficient when there is much overlap between two spatial data
sets, and this study does not take into account the case of k-CPQ with spatial
constraints.

Ferhatosmanoglu et al. [12] applied some methods to answer the constrained
nearest neighbor queries. However, the proposed algorithms are not suitable for
k-CCPQ query.

The most similar work to this study has been explored by Shan. He made a good
attempt to solve the k-CCPQ problem and proposed two kinds of SRCP-tree (Self
Rang Closest Pair tree) [7]. However, SRCP-tree cannot support the CP (Closest
Pair) query for multiple types of spatial objects.

To cope with the k-CCPQ problem in crime databases, we will introduce an effi-
cient k-CCPQ query processing algorithm in the following section. This method can
be applied to other spatial databases as well.

3 Problem Description

In this study, the k-CCPQ problem in crime databases is to seek k pairs of crime
sites in two distinct data sets, and the sites located within a given spatial constraint.
The formal definition is shown below [4].

Definition 1 (k-CCPQ) Given two spatial data sets, S = {s1, s2, . . ., sM} and
T = {t1, t2, . . ., tN}, be stored in two R-trees TM and TN, respectively. The k-CCPQ
of S and T with regard to a given spatial constraint R is defined as k-ordered pairs as
follows:

Processing Constrained k-Closest Pairs Queries 63

(sl1 ,th1),(sl2 ,th2), . . . ,(slk ,thk)

where sl1 ,sl2 , . . . ,slk ∈ S,th1 ,th2 , . . . ,thk ∈ T , and each si∈S and ti∈T has similar
characteristics, respectively, (sl1 ,sl2 , . . . ,slk) and (th1 ,th2 , . . . ,thk) are inside R, such
that:

dist
(
si,tj

) ≥ dist
(
slk ,thk

) ≥ dist
(
slk−1 ,thk−1

) ≥ . . . ≥ dist
(
sl1 ,th1

)

∀ (
si,tj

) ∈ (S × T-{(sl1 ,th1

)
,
(
sl2 ,th2

)
, . . . ,

(
slk ,thk

)}).

The k-CCPQs from the Cartesian product of S and T within Rare k pairs that
have the shortest distances between all pairs of points that are formed by selecting
one point from S and the other point from T. Although “dist” stands for Euclidean
distance in this study, the proposed method can be easily adapted to Minkowski
distance as well. Here, we will give the useful metrics to measure the distances
between two spatial objects.

Given two MBRs for S and T, two spatial objects si∈S and tj∈T. Following [4],
MinMinDist(S, T) is the shortest distance between S and T boundaries and defined
as:

MinMinDist(S,T) = min{MiDist(si,ti)} (1)

where MinDist(si, ti) represents the shortest distance between si and ti.
MaxMaxDist(S, T) is the maximum distance between two points falling on S and

T boundaries. MinMaxDist(S, T) is the minimum distance that guarantees that there
is at least one pair of objects with distance smaller or equal to MinMaxDist [4].
They are defined below [4].

MaxMaxDist(S,T) = max{MaxDist(si,ti)} (2)

MinMaxDist(S,T) = min{MaxDist(si,ti)} (3)

where MaxDist(si, ti) represents the maximum distance between si and ti.
In crime databases, the MBRs of two data sets frequently overlap, because the

criminals often commit an offense in a similar location. It is evident that the higher
the portion of overlapping between two MBRs, the higher the probability that more
pairs with small distances appear [4]. So, we propose a k-CCPQ processing algo-
rithm especially suitable for handling the case of higher overlap between two data
sets in this study.

64 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

4 k-CCPQ Processing Based on Growing Windows

This section introduces a new algorithm for k-CCPQ in crime databases called
GWCCP by combining a new R-tree derived from SRCP-tree [7] to store the index
entities and a density-based range estimation method [10]. The tree structure used
in this paper is called C-tree. The main differences from the existing R-tree based
index structures, such as Guttman’s linear and quadratic R-tree [8], are on the fol-
lowing aspects [6]: (a) each index entry i is augmented with a triple (r1, r2, dist),
where r1 and r2 are the closest pair of objects in the sub-tree rooted by i and distis the
distance between r1 and r2; (b) C-tree uses the Least Recently Used (LRU) buffer
policy [13] in spatial selection, and spatial join between distinct data sets.

The spatial constraint is represented by win = [(xl, yl); (xu, yu)], where (xl, yl)
and (xu, yu) are the lower-left and upper-right corners of the spatial constraint. In
this study, each object is represented by a 2D point.

Definition 2 (k-CCPQ on Windows) Given a set of spatial objects denoted as P,
and a window w in a spatial constraint R, the k-CCPQ on windows refers to find the
k-closest pairs of objects from P located in w.

For instance, consider the query: “find the four pairwise closest airports and
hotels located in a specified city.” For this problem, we set a street zone in this
city as a query window, and expand it to find the required CPs.

Figure 1 gives an illustrative example of the k-CCPQ problem on windows, where
the first data set is represented by stars while the second data set by crosses. Here,
the window R depicted by the dashed line is a spatial constraint and the window
w represented by the dashdotted line is an initial query window. In Fig. 1, we can
observe that the 1-RCPQ is (p2, q1), and the 2-RCPQs are (p2, q1) and (p2, q2).
Similarly, it is easy to find the 3-RCPQs, 4-RCPQs, etc.

+q2

*p3

*p2*p4

*p1

+q1

+q3

R

w

Fig. 1 Example of the
k-CCPQs on window query
problem

Some useful notations are given here. Let S and T be two spatial data sets, s be
an index entry pointing to some node in a C-tree, Node(s) be the node that s points
to, and Sub_tree(s) is the sub-tree rooted by Node(s). The C-tree stores the closest
pair information by a triple (o1,o2, dist) along with the index entry pair (p1, p2).
(o1, o2) is the closest pair of objects, where o1 and o2come from objects indexed

Processing Constrained k-Closest Pairs Queries 65

by Sub_tree(p1) and Sub_tree(p2), respectively. In a C-tree, we borrow the buffer
model proposed by Bhide [13] to manage the node update operations.

4.1 Node Insertion

C-tree uses the regular R-tree insertion algorithm to insert objects [7]. Let {(s1, t1),
(s2, t2), . . ., (sn, tn)} be the index entry pairs pointing to the tree nodes that are along
the insertion path, where s1 points to the root node of S, sn points to the leaf node
that represents a newly inserted object, and Node(si) is a parent node of Node(si+1).

(si, ti) needs to be updated iff there is an object r in the sub-tree rooted by
Node(si), and an object r• in the sub-tree rooted by Node(ti) satisfying dist(r, r•)
< dist(si, ti). If it finds such an object r•, then update the closest pair; otherwise, (si,
ti) keeps unchanged.

4.2 Node Update

If an object is changed, its index record must be deleted, updated, and then re-
inserted. The node update algorithm is shown as follows:

Algorithm 1: Node Update

Input: two C-tree A, B
Output: two updated C-tree A’, B’
Method:

1. For (every object p in A)
2. If (there is a path from the root node to p)
3. Update the node along the path;
4. End if
5. If (the object in A does not have the node in the same level)
6. Update the leaf node in B;
7. End if
8. End for
9. For (every object q in B)

10. Apply the similar update operation as the object in A;
11. End for

In step 2, we update the node as finding the node in the same level in B by using
the closest pair computation method of SRCP-tree [7]. Note, for the node deletion
operation, if p is a leaf node, C-tree uses the plane-sweep algorithm [14] to find the
new closest pair of objects.

66 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

4.3 Query Processing

In this section, we propose a new window query algorithm, namely WinQuery [6],
to find the k-CCPQs, and borrow the idea of density-based kNN query algorithm
[10] to this approach.

First, we use the EstiRange1 function [10] to approximate the query radius. The
difference from EstiRange1 function is that GWCCP uses the square query method
instead of the circle query used in [11]. The initial radius r0 can be calculated by the
following equation:

r0 =
√

k(xu − xl)(yu − yl)

N
(4)

The query range W in the intersecting portion between the spatial constraint R and
two existing spatial data sets S and Tneeds to be calculated first. The x-axis value of
the upper-right corner of W is computed by Equation 5. Similarly, this equation can
be applied to compute xl, yl, and yu.

W.xu = min{R.xu, max{S.xu,T .xu}} (5)

Second, we obtain the results from the estimated range by calling the WinQuery
algorithm as shown in Algorithm 2 and the results are inserted into a temporary
queue temp. θ, is a threshold that is used to determine whether to add a node or not,
and its initial value is set as θ = ∞, which represents a sufficiently large integer.

Then, create an empty priority query priority to store the closest pairs and find the
k-CPQs within the new window. The algorithm terminates when count (the number
of closest pairs found so far) is larger than or equal to k; otherwise, closest pairs
have to be further obtained by gradually extending the window. The growing range
is computed from the current window by the EstiRange2 function [10]. EstiRange2
returns a query radius denoted as rn. The function used in this study is distinct from
the one proposed in [10]. When count = 0, we use the factor of 1.5 (that is an
empirical value by experiments) instead of 2 to expand the radius. When count ∈
(0, k–1], the denominator under the radical sign does not have the factor of π, this
is because we use square query. The query radius is defined in Equation 6.

Algorithm 2: WinQuery(C-tree S, C-tree T, Window w)

1. Create an empty queue temp;
2. If (both objects from S and T in the closest pair are inside w)
3. Put the closest pair into a priority queue queue;
4. End if
5. While (queue is not empty)
6. Pops one triple (e1, e2, dist) from queue;
7. If (dist > θ)
8. Continue;

Processing Constrained k-Closest Pairs Queries 67

9. End if
10. If (both Node(e1) and Node(e2) are leaf nodes)
11. For (every object se1∈Node(e1) and se2∈Node(e2) in w)
12. If (the distance between these two objects is smaller than θ)
13. Update temp and θ = MinMinDist(se1, se2);
14. End if
15. End for
16. End if
17. If (Node(e1) and Node(e2) are not leaf nodes)
18. For (every object se1∈Node(e1) and se2∈Node(e2) in w)
19. Prune such nodes se1 and se2 whose distances to their

corresponding root nodes are greater than T;
20. Compute MinMaxDist between se1 and se2 denoted as dist;
21. If (dist < θ and there are k elements in queue)
22. Update θ to be the maximum value between the distance

value of the top element in queue and dist;
23. Compute the MinMinDist value between se1 and se2;
24. If (it is less than θ)
25. Push (se1, se2, MinMinDist) to queue;
26. End if
27. End if
28. End for
29. End if
30. If (e1 is a leaf node and e2 is an internal node)
31. For(every object se2∈Node(e2) in w)
32. Prune se2 whose distance to its root node is greater than θ;
33. End for
34. End if
35. Use the similar manner as shown in lines 17–29 to handle the case

that e1 is a leaf node and e2 is an internal node;
36. End while
37. Pop all triples from temp;

rn =
{

1.5∗rn−1 if count = 0
√

k
D(win) if 0 < count ≤ k−1

(6)

where D(win) is the density of the window defined as follows:

D(win) = count

(win.xu − win.xl) × (win.yu − win.yl)
(7)

Finally, we use the similar manner as shown in lines 5–36 to find other CPs.
The WinQuery algorithm plays an essential role in coping with k-CCPQ problem.

The time complexity of WinQuery is similar to that of the Heap algorithm [4] and

68 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

SRCP-tree [7]. However, WinQuery performs better than the above two algorithms.
This is because it uses a threshold θ as a filter to compress the size of the queue
and applies an LRU buffer policy to cache the index entities. We will compare and
analyze the performance of the above three algorithms in Section 5.

In WinQuery, we compute the closest pairs based on Equation (8). There is at
least one pair (si, tj) where si ∈S, tj ∈T, such that:

MinMinDist(S, T) ≤ Dist(si, tj) ≤ MinMaxDist(S, T) (8)

Essentially, the proposed k-CCPQ algorithm can be generalized to handle other
k-CPQ problems and is appropriate for other spatial objects. For instance,
WindQuery is applicable to achieve continuous monitoring of nearest neighbors in
highly dynamic scenarios where the objects move frequently and arbitrarily.

5 Experiments

The proposed algorithms were implemented in Java using spatial index library [15].
In order to measure the performance of GWCCP, we compare it with the typical
k-CPQ processing algorithm, i.e., the Heap algorithm [4] that is non-recursive and
evaluated to be better for the k-CPQ problem than other algorithms proposed in
[4], and SRCP-tree [7]. To facilitate comparison, we extended Heap to handle the
k-CCPQ problem in a given query range. Here, we call the new heap-based
algorithm RHeap for short.

For each set of experiments, we use the following real-world and synthetic
data sets.

• The synthetic data sets of distinct cardinalities are denoted by points with x and
y coordinates. They are the sample data for the crime mapping and analysis tool
CrimeStat [16] following a Bayesian distribution. They are used in the Journey
to Crime module. CrimeStat is a spatial statistics package that can analyze crime
incident location data and it provides a variety of tools for the spatial analysis of
crime incidents [17].

• Two real-world data sets are from sample programs of Crime Travel Demand
Module in CrimeStat. They consist of 65,536 traffic analysis zones represented
by longitude and latitude. The data generating involves putting together the
necessary data to estimate the model. This includes selecting an appropriate
zone system, obtaining data on crime trips and allocating it to zones, obtain-
ing zonal variables that will predict trips, creating possible policy, and obtaining
one or more modeling networks [17]. The detailed description is available at
http://www.icpsr.umich.edu/CRIMESTAT/files/CrimeStatChapter.11.pdf.

We conduct experiments on a PC of 2.4 GHz Pentium 4 processor with 512 MB
of RAM. To comply with RHeap, the tree node capacity was set to 21, and the mini-
mum capacity was set to 7, due to the reason given in [18]. To facilitate comparison,

Processing Constrained k-Closest Pairs Queries 69

each experiment was run ten times and the average value was used to evaluate the
performance.

We perform extensive experiments aiming to compare the performance of
GWCCP with RHeap over two distinct data sets, and with SRCP-tree within the
same data set, respectively, for the k-CCPQ problem in the crime databases. The
experimentations consist of evaluating the effect of three important factors, i.e.,
the portion of overlapping between two data sets, the value of k, and the LRU
buffer size.

5.1 Query Time Comparison of 1-CCPQ Algorithms

In this section, we compare the query time performance between GWCCP and
RHeap. Both algorithms are evaluated with respect to the size of the data sets in
distinct portions of overlapping between two data sets. To facilitate comparison, we
assume zero buffer size for C-trees in this experiment.

Figure 2 illustrates the performance of both algorithms on 1-CCPQ between
synthetic data under varying cardinality in (a) 0% and (b) 100% overlapping
workspaces, respectively. The memory cost of 1-CCPQ for real-world data sets is
shown in Fig. 3. Notice that the similar comparison results can be found for any
other value of k as well, here we only give the results when k=1.

0

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100
Data Size(K)

Q
ue

ry
 T

im
e(

s)

RHeap
GWCCP

(a)

0

1

2

3

4

5

6

20 40 60 80 100
Data Size(K)

Q
ue

ry
 T

im
e(

s)

RHeap
GWCCP

(b)

Fig. 2 Query time comparison of 1-CCPQ algorithms on synthetic data in: (a) 0% and (b) 100%
overlapping workspaces

As shown in Fig. 2, GWCCP decreases the query time with respect to RHeap
by a factor of 1.8–2.5 for no overlap cases between two data sets. When the data
sets overlap (Fig. 2(b)), GWCCP also performs well, and achieves time saving of
1–4 times. One reason is that C-tree uses the shortest distance threshold θ instead of
zero as the priority of the closest pairs, which increases the chance that a pair can
be pruned from the priority queue in order to reduce the computations of k-CCPQs
between two distinct data sets. In Fig. 3, the memory cost remains almost unchanged
as the data set grows due to the threshold θ that helps save the memory. In addition,
we can see that the query time in terms of GWCCP does not increase drastically
with the data size.

70 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

0

2

4

6

8

10

12

14

16

20 40 60 80 100

Data Size(K)

M
em

or
y(

M
b)

RHeap
GWCCP

(a)

0
10
20
30
40
50
60
70
80
90

100

20 40 60 80 100

Data Size(K)

M
e

m
or

y(
M

b)

RHeap
GWCCP

(b)

Fig. 3 Memory cost comparison of 1-CCPQ algorithms on real-world data in: (a) 0% and (b)
100% overlapping workspaces

We conclude that GWCCP is a better solution for the k-CCPQ problem, espe-
cially when the data sets significantly overlap. Since both algorithms are sensitive
to the overlap factor, we have to further discuss the effect of this parameter in the
following section.

5.2 The Effect of Overlap

We compare the memory cost of GWCCP with that of RHeap in the synthetic and
the real-world data sets of 40 K cardinality as the overlapping percentage changes
from 0 to 100%. The results are shown in Fig. 4.

0

5

10

15

20

25

0 5 10 20 40 60 80 100

M
em

or
y(

M
b)

RHeap

GWCCP

Protion of Overlapping(%)

(a)

0

2

4

6

8

10

12

14

0 5 10 20 40 60 80 100

M
em

or
y(

M
b)

RHeap
GWCCP

Portion of Overlapping(%)

(b)

Fig. 4 Memory cost comparison on the overlap factor with: (a) synthetic and (b) real-world data

Straightforwardly, the overlap between two data sets plays a critical role for the
performance. However, for GWCCP, the memory cost for a query involving larger
overlap is slightly higher than the case involving disjointed workspaces. Because the
query window extended gradually until finding the k-CPQs, and the growing query

Processing Constrained k-Closest Pairs Queries 71

window helps eliminate the unneccessary memory cost spent on computing the dis-
tances between spatial objects. For RHeap, the higher the portion of overlapping
between two data sets, the higher the memory cost. In summary, GWCCP is more
suitable for k-CCPQ with a higher portion of overlapping between two distinct data
sets.

5.3 The Effect of k

For this set of experiments, we run k-CCPQs in the real-world and in the synthetic
data sets of 40 K cardinality, with k varying from 1 up to 100,000. Figures 5 and 6
illustrate the query time and the memory cost of both algorithms assuming (a) 0%
and (b) 100% overlapping workspaces in the real-world data sets.

Fig. 5 Query time comparison of k-CCPQ algorithms with real-world data in: (a) 0% and (b)
100% overlapping workspaces

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000
k

M
em

or
y(

M
b)

RHeap
GWCCP

(a)

0

20

40

60

80

100

120

1 10 100 1000 10000 100000
k

M
em

or
y(

M
b)

RHeap
GWCCP

(b)

Fig. 6 Memory cost comparison of k-CCPQ algorithms with synthetic data in: (a) 0% and (b)
100% overlapping workspaces

72 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

According to Fig. 5, the cost of both algorithms increases with k in the real-world
data sets. This is because both algorithms need more time to find the increased
closest pairs of spatial objects as k grows. GWCCP wins RHeap with an average
gap of 65% and 53% in 0% and 100% overlapping workspaces, respectively.

We can see from Fig. 6 that GWCCP achieves a significant improvement in terms
of memory cost by a factor of 2–5 for 0% overlap (respectively, 4–7 for 100% over-
lap) as k grows. This further illustrates that GWCCP adapts to cope with the case of
higher overlap between two data sets. According to Fig. 6, when the kvalue is larger
than 1,000, the memory cost of RHeap changes sharply. However, GWCCP has a
slight change when k increases. This is because C-tree uses the LRU buffer policy
[13] to improve the quality of the C-tree update operation. In the following section,
we will further investigate the effect of the LRU buffer.

5.4 Disk Access Comparison Under Distinct Buffer Size

Buffer policies considerably affect the performance of R-tree [19]. In this set of
experiments, the buffer varies from B = 0, . . ., 256 pages, i.e., each C-tree has equal
portions of B/2 pages. We observe the performance of each algorithm in the real-
world as well as the synthetic data sets of 40 K cardinality assuming 20% overlap
and k = 1000. It is a tradeoff to choose a relatively low overlapping percentage,
and RHeap performs well whenk is lower than 1000 as empirically illustrated in the
previous subsection. The results are shown in Fig. 7.

0

20

40

60

80

100

0 4 16 64 256

D
is

k
A

cc
es

se
s

RHeap
GWCCP

LRU Buffer Size(in pages)

(a)

0

20

40

60

80

100

0 4 16 64 256

D
is

k
A

cc
es

se
s

RHeap
GWCCP

LRU Buffer Size(in pages)

(b)

Fig. 7 Comparison of k-CCPQ algorithms under distinct LRU buffer size in: (a) synthetic and (b)
real-world data sets

Figure 7 shows that the results for the synthetic and the real-world data sets are
improved by up to 3 times in terms of disk accesses. However, RHeap is not sensitive
to the buffer size (only up to 10% improvement as the buffer size reaches 256). On
the contrary, GWCCP is sensitive to the buffer size. Because GWCCP uses the LRU
buffer policy to maintain the C-trees, the disk accesses are greatly reduced.

Processing Constrained k-Closest Pairs Queries 73

5.5 Comparison Between GWCCP and SRCP-Tree

The problem of finding k-CCPQ in the same data sets is another practical problem in
real-world scenarios. For example, a police officer may want to find the two closest
first-aid centers. As suggested by [7], SRCP-tree performs well in handling this
problem. In this section, we compare the performance in terms of the query time
and memory cost of GWCCP with SRCP-tree.

In this set of experiments, we compare these two algorithms with an 80 K real-
world and 80 K synthetic data sets. We first observe the query time of GWCCP and
SRCP-tree as the overlapping percentage ranges from 0 to 100% with an interval of
20%. The results are shown in Fig. 8.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

Q
ue

ry
 T

im
e

(s
)

SRCP-tree

GWCCP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

Q
ue

ry
 T

im
e

(s
)

SRCP-tree

GWCCP

Portion of Overlapping (%)

(a)
Portion of Overlapping (%)

(b)

Fig. 8 Query time comparison within the same data set under distinct portions of overlapping on:
(a) synthetic and (b) real-world data

As shown in Fig. 8, GWCCP outperforms SRCP-tree when the portion of over-
lapping is lower than 60% in the real-world and the synthetic data sets. For GWCCP,
the query window is gradually extended until it finds the k-CCPQs (the overlapping
percentage is about 60%), which helps eliminate the re-calculation of CPs. In partic-
ular, the increase of query time in terms of GWCCP is slight as it finds the k-CCPQs,
whereas the query time in terms of SRCP-tree decreases drastically when the over-
lapping percentage is higher than 60%. This is because the probability of having a
CP in the query range increases as it becomes large, and thus the query time drops.

We also compare the memory cost of these two methods within the synthetic and
the real-world data sets, the results are shown in Fig. 9.

As we can see from Fig. 9, the memory cost of GWCCP keeps flat when the por-
tion of overlapping reaches 60%, whereas the curve of SRCP-tree goes up linearly
with the overlapping percentage. The reason is that GWCCP will stop searching
when it finds the k-CCPQs, even if the portion of overlapping increases.

74 Qiao, Tang, Jin, Dai, Chen, Chau, and Hu

3

4

5

6

7

8

9

10

0 20 40 60 80 100
Portion of Overlapping (%)

M
em

or
y

co
st

 (
M

b)

SRCP-tree
GWCCP

(a)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 20 40 60 80 100

Protion of Overlapping (%)

M
em

or
y

co
st

 (
M

b)

SRCP-tree

GWCCP

(b)

Fig. 9 Memory cost within the same data set under distinct portions of overlapping on:
(a) synthetic and (b) real-world data

6 Conclusions and Future Work

We have proposed a new constrained k-closest pairs query processing algorithm
based on growing windows, namely GWCCP. It employs an R-tree structure having
inherent properties of the SRCP-tree to store the index entities, and a density-based
range estimation method without boundary to calculate the square query range.
Experiments have demonstrated that GWCCP outperforms the heap-based algo-
rithm with respect to the portion of overlapping between two distinct data sets, the
value of k, and the LRU buffer size.

We point out several interesting issues for future research including developing
other range estimation approaches for k-CCPQs, proposing other good buffer policy
for C-trees, and applying our proposed algorithm to assist in crime mapping and
data analysis.

Acknowledgments This work is supported by the National Natural Science Foundation of China
under Grant No. 60773169, the 11th Five Years Key Programs for Sci. and Tech. Development
of China under Grant No. 2006BAI05A01, and the Youth Software Innovation Project of Sichuan
Province under Grant Nos. 2007AA0032 and 2007AA0028.

References

1. Overview of Data Collection in British Columbia. Available at http://www.pssg.gov.bc.
ca/police_services/publications/

2. Chen H (2007) Exploring extremism and terrorism on the Web: the dark web project. In:
Pacific Asia Workshop on Intelligence and Security Informatics, PAISI 2007, Chengdu,
pp. 1–20

3. Leipnik MR, Albert DP (2003) GIS in law enforcement: Implementation issues and case
studies. Routledge, London, pp. 1–47

4. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in
spatial databases. In: Proceedings of ACM SIGMOD 2000, Dallas, pp. 189–200

Processing Constrained k-Closest Pairs Queries 75

5. Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2004) Algorithms for pro-
cessing k-closest pair queries in spatial databases. Data and Knowledge Engineering, 49(1):
67–104

6. Qiao S, Tang C, Jin H, Dai S, Chen X (2008) Constrained k-Closest Pairs Query Processing
Based on Growing Window in Crime Databases. In: 2008 IEEE International Conference on
Intelligence and Security Informatics, Taipei, pp. 58–63

7. Shan J, Zhang D, Salzberg B (2003) On spatial-range closest-pair query. In: Proceedings of
SSTD 2003, Greece, pp. 252–270

8. Guttman A (1984) R-trees a dynamic index structure for spatial searching. In: Proceedings of
ACM SIGMOD 1984, Boston, pp. 47–57

9. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of
ACM SIGMOD 1995, San Jose, pp. 71–79

10. Liu D, Lim E, Ng W (2002) Efficient k nearest neighbor queries on remote spatial databases
using range estimation. In: Proceedings of SSDBM 2002, Edinburgh, pp. 121–130

11. Hjaltason GR, Samet H (1998) Incremental distance join algorithms for spatial databases. In:
Proceedings of ACM SIGMOD 1998, Seattle, pp. 237–248

12. Ferhatosmanoglu H, Stanoi I, Agrawal D, El Abbadi A (2001) Constrained Nearest Neighbor
Queries. In: Proceedings of SSTD 2001, Redondo Beach, pp. 257–278

13. Bhide A, Dan A, Dias D (1993) A simple analysis of LRU buffer replacement policy and its
relationship to buffer warm-up transient. In: Proceedings of ICDE 1993, Vienna, pp. 125–133

14. Hsiao P, Tsai C (1990) A new plane-sweep algorithm based on spatial data structure for
overlapped rectangles in 2-D plane. In: COMPSAC’90, Chicago, pp. 347–352

15. http://research.att.com/˜marioh/spatialindex/index.html
16. http://www.icpsr.umich.edu/CRIMESTAT/
17. Ned Levine (2007) CrimeStat: A Spatial Statistics Program for the Analysis of Crime Incident

Locations (v 3.1). Ned Levine and Associates, Houston, TX, and the National Institute of
Justice, Washington, DC. March.

18. Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The R∗-tree: an efficient and robust
access method for points and rectangles. In: Proceedings of ACM SIGMOD 1990, New York,
pp. 322–331.

19. Leutenegger ST, Lopez MA (2000) The effect of buffering on the performance of R-trees.
IEEE Transactions on Knowledge and Data Engineering, 12(1): 33–44.

	Processing Constrained k -Closest Pairs Queries in Crime Databases
	1 Introduction
	2 Related Work
	3 Problem Description
	4 k -CCPQ Processing Based on Growing Windows
	4.1 Node Insertion
	4.2 Node Update
	4.3 Query Processing

	5 Experiments
	5.1 Query Time Comparison of 1-CCPQ Algorithms
	5.2 The Effect of Overlap
	5.3 The Effect of k
	5.4 Disk Access Comparison Under Distinct Buffer Size
	5.5 Comparison Between GWCCP and SRCP-Tree

	6 Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

