
Decision Support Systems 48 (2010) 369–382

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r.com/ locate /dss
Designing the user interface and functions of a search engine development tool

Michael Chau ⁎, Cho Hung Wong
School of Business, The University of Hong Kong, Pokfulam, Hong Kong
⁎ Corresponding author.
E-mail addresses: mchau@business.hku.hk (M. Chau

(C.H. Wong).

0167-9236/$ – see front matter © 2009 Elsevier B.V. Al
doi:10.1016/j.dss.2009.10.001
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 29 January 2009
Received in revised form 27 August 2009
Accepted 14 October 2009
Available online 25 October 2009

Keywords:
Web search
Search engine development tools
User evaluation
Search engine development tools have been made to allow users to build their own search engines. However,
most of these tools have been designed for advanced computer users. Users without a full understanding of
topics such as Web spidering would find these tools difficult to use due to different issues in terms of user
interface, performance, and reliability. In view of these issues, we presented a tool called SpidersRUs to strike
a balance between usability and functionality. On one hand, beginners should be able to operate the tool by
using the basic functions needed to build a search engine. On the other, advanced users should be given the
options to exert a higher level of customization while working on the tool. To study the interface design of
SpidersRUs, we compared its usability and functionality from the users' perspective with two other
development tools, namely Alkaline and Greenstone, in an evaluation study. Our study showed that
SpidersRUs was preferred over the other two, particularly in areas of screen layout and sequence,
terminology and system information, and learning to use the system.
), joewch@graduate.hku.hk

l rights reserved.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The rapid development of the Internet and the large amount of
information on the World Wide Web have led to the problem of
information overload [3]. This motivated the development of search
engines such as Google (www.google.com) and AltaVista (www.
altavista.com), many of which have become a commercial success.
While they can satisfy users' queries for general purposes, most of these
search engines do not allow users to specify the intended search topic,
thereby generating a large number of results which the user may
consider irrelevant. For instance, searching for the keyword ‘option’may
retrieve results related tofinance (as in “call option”) or interface design
(as in “option button”), among other topics. In view of the problem,
most general-purpose search engines try to offer some solutions. For
example, a search engine can suggest a list of more specific keywords,
which leads to search results in a particular topic. For example, upon
searching for “zodiac”, Yahoo! (www.yahoo.com) suggested a list of
terms including ‘zodiac movie’ and “zodiac signs”, so users would get
results related to either themovie or the star signs. Anothermethod is to
allow users to specify a domain (Web host) address so all search results
are obtained from that domain. For example, searching for the movie
“Zodiac” from The Internet Movie Database (www.imdb.com) can be
entered in Google as “zodiac site:www.imdb.com”.

The twomethods above, however, donot offer the complete remedy.
In the first one, adding another keyword as the topic can result in Web
pages that are still too general. The second solution allows domain-
specific searches, but the search results canbe limited, and in somecases
users may not find a good Web domain for their searching.

Vertical search engines address the potential needs for topic-
specific searching by restricting the search collection and results to a
specific topic [7]. Healthline (www.healthline.com), for instance,
supports searching for only health-related topics. LawCrawler (law-
crawler.findlaw.com) is a vertical search engine for legal information.
The development of vertical search engines is useful for decision
support in particular topics because they can provide customized
information and analyses in these topics. By collecting onlyWeb pages
in a given topic, it is often possible to collect documents more
accurately and comprehensively. Analyses that are specific to the
topic also can be performedmore easily in vertical search engines. For
example, medical term suggestions, ontology-based analysis and
clustering have been developed for a medical search engine called
HelpfulMed in the medical area [12]. These search engines often serve
as useful decision support tools [19].

To help the development of vertical search engines, a number of
development tools for building vertical search engines have been
created. Building a search engine involves a number of technical details.
While the development tools can be designed to handle everything
automatically sousers canbuild their own searchengines easily, the lack
of user involvement may result in poor collections and a low level of
customization. On the other hand, development tools that assumeusers'
possession of expert knowledge in programming may render the tools
unusable. Therefore, it would be interesting to study how to design a
good search engine development tool to strike the balance.

In this paper, we present our work in designing a vertical search
engine tool, called the SpidersRUs Digital Library Toolkit, with a focus
on user evaluation. We describe in detail the design and the user

http://www.google.com
http://www.altavista.com
http://www.altavista.com
http://www.yahoo.com
http://www.imdb.com
http://www.imdb.com
http://www.healthline.com
mailto:mchau@business.hku.hk
mailto:joewch@graduate.hku.hk
http://dx.doi.org/10.1016/j.dss.2009.10.001
http://www.sciencedirect.com/science/journal/01679236


370 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
interface of the tool and report a study that compares the tool with
two widely used vertical search engine development tools, namely
the Greenstone Digital Library Software and the Alkaline Search
Engine Server. Instead of looking at the effectiveness of the collection
quality and search performance of these tools, we focus on evaluating
the user satisfaction when using these tools in the development
process. In particular, we emphasize on areas of the tools such as user
interface, documentations and support.

The rest of this paper is structured as follows. Section 2 reviews the
major components of a searchengine, including theWeb spider, indexer
and query engine, and existing vertical search engine development
tools. Section 3 specifies the research focus and value of this study.
Section 4 presents in detail the system design of SpidersRUs Digital
Library Toolkit. Section 5 discusses the methodology to study the
comparative usability of the three tools, and reports and discusses the
results from the study. In Section 6, we provide some guidelines for user
interface design for search engine development tools. We conclude the
paper with some discussions of future research in Section 7.

2. Related work

This section starts by presenting themajor components commonly
seen in vertical search engine development tools. We then present
two existing tools that are available and have been discussed in
previous research.

2.1. Components of a search engine development tool

A common search engine development tool consists of a number of
Web spiders, an indexer and a query engine, which help users in
collecting, indexing, and querying Web pages, respectively [1]. Fig. 1
shows the overall architecture of a typical vertical search engine
development tool.

A Web spider (also known as Web crawler) is a program that
automatically retrieves documents (such as HTML and PDF) in the
World Wide Web, which is a process called Web spidering or Web
crawling [5,13]. In case of building a vertical search engine, a list of
URLs (known as seeds) that link to documents in the intended topic
should be specified as starting points for the Web spiders. Building a
search engine about sports, for example, will need URLs pointing to
Web sites such as Yahoo! Sports and ESPN.com. Each spider will then
fetch the documents from the Web, identify the hyperlinks stored in
them and visit these documents in turn by following the hyperlinks.
As theWeb spidermakes a visit, it retrieves the document and stores a
copy in the executing computer. Using some filtering and selection
techniques during the process of Web spidering, a collection of
documents is created. For example, URLs pointing to invalid or
irrelevant documents can be removed [10,11,18]. As the seeds are
Fig. 1. Overall architecture of a common ve
related to a specific topic, it is likely that the majority of documents in
the collections are topic-specific. Some advanced focused crawling
techniques may be used in the spidering process [4,6,20], though
these techniques are generally not available in popular search engine
development tools.

An indexer creates a search index (in a process called indexing) for
the collection of documents obtained during Web spidering. The first
step is to extract a list of key words from the collection of topic-
specific documents so as to create an initial index, which maps each
document to the list of words. The next step is to create an inverted
index which maps a word to a list of documents containing that word
[21]. The aim of indexing is to enable efficient searching. Without an
index, a search querywill have to be handled by traversing through all
the documents, which is not time-efficient.

A query engine is the main program that handles users' queries [1].
It takes search queries (usually as one or more keywords) and finds
relevant documents by looking up in the inverted index. Although the
query engine is the only program that accepts search queries directly
from users, the performance of searching (e.g., relevance of search
results, searching time) largely depends on the implementation of the
Web spiders and indexer, in addition to hardware performance of the
server machines running the query engines. In most cases, users
access the query engine using a Web browser, which displays the
search results as a Web page.

2.2. Existing tools

In this subsection, we review two popular building tools that have
been widely used in previous research, namely the Greenstone Digital
Library Software (Greenstone) and the Alkaline Search Engine Server
(Alkaline) [8,23,24].

Greenstone is an open-source multilingual software application
for building digital libraries. The application was developed by the
New Zealand Digital Library Project at the University of Waikato [23–
26]. While it fully supports four different languages (English, French,
Spanish and Russian), it also offers a graphical interface in more than
40 languages, created by a large number of volunteers. In terms of
multi-platform support, Greenstone is available for Microsoft Win-
dows, PowerPC Mac OS X, and Linux. The application also comes with
a lot of online recourses and documentation. In addition to HTML,
Greenstone allows users to build digital libraries supporting file
formats such as Word, PDF and PowerPoint, as well as multimedia
documents including JPEG, MP3 and MPEG. The tool was designed for
users with different levels of computer literacy [2]. While general
users will be able to build their own search engines, advanced users
with knowledge in HTML or Perl are allowed to exert greater
customization. Figs. 2–4 show the screenshots of Greenstone during
the process of building a search engine.
rtical search engine development tool.



Fig. 2. Greenstone – creating a new collection.

Fig. 3. Greenstone – adding seeds.

371M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382



Fig. 4. Greenstone – search results.

372 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
Alkaline is a freeware developed by Vestris Inc. in Switzerland. The
applicationwas designed for non-commercial use, although purchase of
licenses is also available for commercial users. The multi-platform tool
supports most popular operating systems. The latest release (version
1.9) is available for use on six operating systems (including UNIX,
Microsoft Windows NT/2000/XP and Sun Solaris). As for functionality,
Alkaline supports a wide range of searching including Simple Search,
Boolean Search, Meta Data Search, and Numeric Data Search. Similar to
Greenstone, Alkaline supports the searching of HTML, PDF, Word and
multimedia files. Alkaline was designed for users with more advanced
computer skills. In order to enable case-sensitive searching, for example,
users are required to have some knowledge in HTML and Perl. The
official user guide (http://alkaline.vestris.com/docs/alkaline/index.
html) and FAQs (http://alkaline.vestris.com/faq.html) are the major
official resources available online. Themajority of resources available on
the official Web sites are devoted to technical specifications and
support, such as installation, upgrade, server configuration, perfor-
mance optimization, customization, indexing, searching and trouble-
shooting. Materials suitable for general users, on the other hand, are
relatively limited.

Alkaline is based on text command prompt and does not provide a
graphic user interface during the search engine development process.
To create a new collection in Alkaline, users need to create a new
directory under the Alkalinemain directory. The new directory should
contain the configuration file “asearch.cnf” and the search engine
main page “search.html”. Two screenshots of what users can see in the
command prompt are shown in Figs. 5 and 6. Fig. 7 shows the search
results page that users can see when performing a search.

While much extant research has been devoted to the study of
general-purpose search engines, very little has been done on the
development tools and their usability. A few examples include the
Greenstone User Survey conducted by the School of Library and
Information Science at the University of North Carolina in late 2004
[22]. The objective of the study was to obtain users' feedback about
“adequacy of current support structures and mechanisms” of the
Greenstone Digital Library Software. In particular, a survey was
conducted among members of the Greenstone community. Questions
of the survey were mostly related to user manuals, availability of
training and support, as well as suggestions for future improvement.
The study had a greater emphasis on external aspects of the software,
while users' opinions about the software itself were omitted.
3. Research questions

Although vertical search engine development tools have been
available for general users for many years, there has not been an
adequate study on the users' satisfaction towards the tools. In
particular, we believe that areas such as user interface and
functionality are important parts of the user experience. In this
paper, we report our design and evaluation of a vertical search engine
development tool, with a focus on the evaluation in five areas: users'
overall reaction, screen layout, terminology and system information,
learning to use the system, and system capabilities. We compare
SpidersRUs against Greenstone and Alkaline as the benchmarks. In
general, we aim to evaluate the relative usability and user satisfaction
of the three tools in order to compare their quality from the users'
point of view.

Greenstone and Alkaline were chosen because of several reasons.
First, these two tools were widely used and reported in previous
studies [8,24]. Second, they were among the few search engine
development tools that were freely available at the time of the study.
We believe these two are the best tools that are most suitable for our
study. In addition, the two tools cover the whole search engine
development process. Some other tools focus only on a part of the
process (either spidering or indexing) and are therefore not suitable.

http://alkaline.vestris.com/docs/alkaline/index.html
http://alkaline.vestris.com/docs/alkaline/index.html
http://alkaline.vestris.com/faq.html


Fig. 5. Alkaline – spidering.

373M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
Lastly, the two tools have a similar set of features as SpidersRUs. This
allows for better comparison among the three tools.

4. System design

This section discusses the system architecture of the search engine
development tool SpidersRUs that we designed. SpidersRUs is a
collection of modular tools designed for different functions (e.g.,
spidering, indexing, searching). The tool can be used to build search
engines in multiple languages (e.g., European, Middle East and Asian
languages). Same as the two applications discussed above, SpidersRUs
can be run on multiple platforms, such as Windows and Linux.
SpidersRUs was written in Java, a platform-independent program-
ming language. Java adopts double-byte for character storage, which
is useful for multilingual systems [15]. Developed as a collection of
several components, the application stores intermediate results as
text files after each step of the development process, thus offering
users a higher degree of customization. SpidersRUs was designed to
suit the need of both general and advanced users. While any users can
build their search engines using the default step-by-step approach,
advanced users can modify existing components to meet their own
needs.

In general, the design of SpidersRUs resembles the architecture
presented in Section 2.2 and a design diagram is shown in Fig. 8. The
detailed architecture of SpidersRUs was presented in [8,9]. In this
paper, we focus more on areas such as the user interface, that are
relevant to using the system from a user perspective.

The system is comprised of four components, three of which
correspond to the three main functions of the tool, while a graphical
user interface (GUI) is used to access these functions. In the following,
we will discuss each component in details as well as the unique
features offered by the components while we go through the process
of developing a search engine.

4.1. Spidering

To start with, the users have to specify a list of topic-specific URLs
known as seeds, which are then assigned to the spiders. Each spider is
initially assigned exactly one URL from the seeds and tries to fetch the
document specified by the URL. To maximize efficiency, parallel
fetching of documents is made possible by implementing each spider
as a single thread. A component called ContentHandler is used to
check if there are any duplicated documents collected (e.g., due to
mirror sites). This is implemented by maintaining a hash table called
ContentSeen. In addition, in order to improve the relevance of search
results, irrelevant documents can be filtered out from the collection at
same time. This function is handled by the ContentFilter, which checks
to see if the documents contain some key words that the users have
included in the bad-term list. Each document in the filtered collection
is assigned an identifier (id) in the Item Index, which keeps the list of
all documents and their corresponding ids. This completes the first
pass of spidering.

In order to build a larger collection, any HTML documents, which
most commonly contain URLs pointing to other documents of the
same topic, are passed to the HTMLParser. After receiving each HTML
document, the HTMLParser extracts all the URLs inside and passes
them to the URLHandler, which decides whether to add the target
document to the collection by considering a number of factors.

Firstly, the URLHandler maintains a hash table called URLSeen,
which is similar to the ContentSeen described above. If a URL is found



Fig. 7. Alkaline – search results.

Fig. 6. Alkaline – starting search service.

374 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382



Fig. 8. Overall architecture of SpidersRUs.

375M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
in the URLSeen, it suggests that the URL has been accessed before and
should thus be ignored. Otherwise, the URL is passed to one of the
spiders for fetching, and it is also added to the URLSeen to avoid
duplicate fetching. One point worth mentioning is that a URL of a
particular Web domain will always be passed to the spider that has
been fetching from that domain. This restriction ensures that no two
spiders can access the same Web server at the same time, which
avoids overloading the server.

Secondly, a component called URLFilter is used to filter out “bad
URLs”. In order for this function to work, users can specify a list of
unwanted URLs using regular expression. Any URL handled by the
URLHandler that matches the unwanted list will be ignored.

Thirdly, the Robot Exclusion Protocol is used to determine if the
Web server welcomes robots to index its documents. In practical
terms, if the file “robots.txt” is found on a Web server, the URLs listed
in the file will be ignored by the URLHandler.

Subsequently, any newURLs from the URLHandler will be added to
the URL queue and fetched by the spiders. The document collection as
well as the Item Indexwill grow in size. The process can be terminated
based on a number of factors. For instance, users can set a limit on the
total number of documents to be fetched.

4.2. Indexing

The Item Index and the collection of documents obtained after
spidering are passed to the IndexerMaster. The IndexerMaster obtains
information about each document in the collection and decides if it is
an HTML, Word, PDF or Excel document. The document is then passed
to the respective document parser (HTML Parser, PDF Parser, Word
Parser, or Excel Parser), where it is converted to plain text for easier
indexing.

After that, an Initial Index is created by the DocIndexer. The Initial
Index is essentially a list of bdocument, word, frequency of
occurrencesN tuples. As multilingual support is a highlighted feature
of SpidersRUs, the decision for defining a word is crucial at this step.
Apparently English words are sequences of characters separated by
spaces, but when it comes to some Asian languages such as Chinese
and Japanese, which do not have spaces, the definition of a word can
become controversial. While one can define a word as a sequence of
characters separated by punctuations, each “word”will be excessively
long and impossible to be matched by end-users' search queries. Here
we adopt a slightly different definition between space-delimited
(most European languages including English) and non-space-delim-
ited (most Asian languages) languages. For the former, a word is
separated by either punctuation or a space; for the latter, each
character is taken as a word.With these measures taken, both types of
languages can be indexed effectively.

The next step following the creation of the initial Index is to build
the Inverted Index, as mentioned in Section 2.2. Technically the
Inverted Index contains the exact same list of words as the initial
Index. To create an Inverted Index, we should first traverse through
the Index to get the list of words (with duplicates removed). Then for
each word in the list we need to find the corresponding documents
and frequency. In otherwords, the Inverted Index is a list of bword, list
of documents, frequencyN tuples for the entire document collection.

4.3. Searching

The Searcher is the component that allows users to perform
searching through a Web interface. Besides focusing on searching
efficiency and accuracy, it is very important for the Searcher to have a
user-friendly and easy-to-use Web interface for getting queries from
and displaying search results to the end-users. In SpidersRUs, users
can specify customized HTML files to be used as templates for the
search interface and for result display.

4.4. User interface

4.4.1. Creating a new project
When the tool first starts, the users have to create a new project. A

new project may be created as “New” or “Advanced New”. While the
first option appeals to general users with a simple interface (see
Fig. 9), the “Advanced New” option offers more options for advanced
users to exert a higher degree of customization (see Fig. 10). In
particular, the “Advanced New” option allows users to specify the



Fig. 9. Creating a “New” project.

376 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
location of each of the components of the tool, which include
IndexerLoader, SpiderMaster, IndexerMaster, Searcher and so on.

Any newly created projects are added to the projects list on the left
of the main window. This feature allows users to work on multiple
projects at the same time. As shown in Fig. 11, a list of parameters
such as “Items collected” and “Search index size” can be seen on the
right in the “Collection” tab after selecting a project on the left.
4.4.2. Spidering
In the Spidering tab (Fig. 12), users can press the “Add Seeds”

button to specify the seeds for spidering. They may choose to insert
the URLs one by one, or to import them from a text file.

As shown in Fig. 13, the “Advanced” option allows users to enter
some spider parameters such as “no. of spiders” and “timeout”.
Fig. 10. Creating an “Advanced New” project.
The spidering process can then be started. We recognized that it is
important that users be informed about the progress of their
collection. During the process, a progress bar and the number displays
(e.g., number of pages fetched) will be continuously updated. Detailed
messages can also be seen from the text box at the bottom (see
Fig. 14). These messages are useful for debugging purpose for
advanced users.

4.4.3. Indexing
After the documents have been fetched, users can start the

indexing process to create the initial Index and then the Inverted
Index. These steps are carried out under the Indexing tab (Fig. 15).

4.4.4. Search service
After the vertical search engine has been built, users can start the

search engine server by clicking on the “start service” button (Fig. 16).
The default port of 9999 will be used, but it can be changed by the
users if needed. The user interface of the search engine can be shown
by launching a Web browser (Fig. 17).

5. Evaluation

In order to test the usability of SpidersRUs in facilitating users in
search engine development, we conducted a user study to compare
the usability and user satisfaction of SpidersRUs with Greenstone and
Alkaline as benchmarks. We discuss the study in detail in this section.

5.1. Overview of the study

The evaluation study was conducted in an undergraduate business
course called Internet Applications Development, which was taught at
the University of Hong Kong (HKU). Participants were asked to build
topic-specific search engines in the course as part of their coursework.
Each group (with three students) was assigned a specific topic (e.g.,
basketball) and they had to create search engines based on that topic.
In order to compare among the three tools mentioned above, each
group had to use all the three tools. In other words, each group would
produce three search engines on the same topic.

Although most participants did not have any experience in
building search engines, they were given only 4 weeks to finish
their work as a group. The time constraint was set so that we could
evaluate the level of difficulty in learning to use the tools.

After the participants finished the project, each of them completed
a questionnaire. Details of the questionnaire are discussed in the
following sections.

5.2. The Questionnaire for User Interaction Satisfaction (QUIS)

Our questionnaire was designed based on a usability testing tool
called Questionnaire for User Interaction Satisfaction (QUIS). Devel-
oped by the Human–Computer Interaction Lab at the University of
Maryland at College Park, QUIS is a measurement tool for evaluating
computer users' subjective satisfaction with the human–computer
interface [14]. It has been suggested that QUIS is widely applicable for
accessing many different types of interfaces [16].

While a lot of other measurement tools also serve a similar
purpose, they usually suffer from problems such as validation and
reliability [17]. It has also been suggested that the selection of
question types is also an important factor to make a questionnaire
effective in revealing users' opinion towards usability of software
systems [14].

QUIS was designed as a result to provide reliable measurement
methods. There had been a number of versions of QUIS, with each
version adding more evaluation criteria to the previous one. Most
QUIS-based questionnaires are arranged in a hierarchical layout — it
starts with a demographic questionnaire, which aims to determine



Fig. 11. Working with multiple projects.

377M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
user background information such as level of computer literacy. This is
followed by measures of overall reaction towards the system. Finally,
there are several specific interface sections.

We adapted our questionnaire from QUIS and it consists of:

(1) A background information section with questions relating to
experience of using computers and building search engines;

(2) An overall-reaction section with six measures (e.g., level of
difficulty and satisfaction of using each of the search engine
building tools);
Fig. 12. Adding
(3) Four standard measures on screen layout and sequence,
terminology and system information, learning to use the
system and system capabilities; and

(4) A comments section containing open-ended questions, which
allow subjects to provide comments that are possibly related to
areas of improvement of each tool desired by the subjects.

In parts (2) and (3) above, subjects were asked to give their
responses to all of the three tools for each question being asked (i.e.,
three responses to each question) so that we could easily compare
seed URLs.



Fig. 13. Advanced spider parameters.

378 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
among the different tools. For these three sections, the response to
each item was rated on a 10-point scale (with a positive adjective on
one side of the scale and a negative one on the other side). In a
question about “use of terms throughout system”, for example,
answering 0 meant the use of terms in the tool was “mostly
inconsistent” and 9 “mostly consistent”.
5.3. Results of the study

A total of 28 sets of responses were received from the 33 subjects,
yielding a response rate of 84.85%. In the following sections, we
analyzed our results by presenting the mean scores and t-test pair-
wise comparisons between the means. As mentioned earlier, each
response was given on a 0–9 scale (9 being the most favorable). Also
note that the sample size for all of the results was 28.
Fig. 14. Spidering
5.3.1. Overall reactions to the tools
The participants' responses regarding their overall reactions to the

tool are summarized in Table 1. In terms of overall reactions to each of
the three tools, SpidersRUs scored the highest in all of the six areas
specified in the questionnaire, which suggests that it was preferred
over the other two. Besides, Alkaline was also given favorable scores,
particularly in the area of flexibility, where its mean score was very
close to that of SpidersRUs. Surprisingly Greenstone had the lowest
scores among the three tools, even though it was designed for
computer users with different levels of computer skills.

We conducted a series of t-test and the results showed that the
mean scores for SpidersRUs are significantly better than that for
Greenstone, especially in terms of overall impression, user friendli-
ness and being interesting, for which the p-values are smaller than
0.0001. On the other hand, the differences are smaller between
Alkaline and SpidersRUs. The difference is only significant in two
items (being interesting and ease of use).

5.3.2. Four QUIS standard measures
The four QUIS standardmeasures we included in the questionnaire

were screen layout and sequence, terminology and system informa-
tion, learning to use the system, and system capabilities. The results of
these measures are shown in Table 2.

In terms of screen layout and sequence, themean score of SpidersRUs
is higher than that of Alkaline, which in turn is higher than that of
Greenstone. A pair-wise t-test further confirmed that SpidersRUs has the
highest scores for all four items as well as the average score in this area.
The high scores of SpidersRUs in screen layout can be partly explained by
the clear interface layout, which starters would find easier to control
without having to consult the documentation. For example, as shown in
Fig. 11, SpidersRUs has a collection menu (the panel on the left) which
lists all projects that the user is currently working on, whereas
Greenstone can have only one project opened at a time, which means
in progress.



Fig. 15. Indexing.

Fig. 16. Search service.

379M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382



Fig. 17. Sample search engine results page in a Web browser.

380 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
in order to switch from a project to another, users have to save the
current project before opening another one.

In the area of terminology and system information, SpidersRUs'
scores are again the highest in every question that we included, and
the differences between the two pairs (Alkaline/SpidersRUs and
Greenstone/SpidersRUs) are also significant, as demonstrated by the
small p-values. In addition, while Alkaline scored generally higher
than Greenstone, the former obtained a lower score in messages on
screen which prompt the user for input.

We suggest that themain reason for SpidersRUs' high scores in this
particular area is again its user interface design. For example, as
shown in Fig. 14, any information or error messages are always shown
in the bottom panel in the same frame, so users can easily keep track
of the spidering process. Also, the tool always makes the screen
simpler by hiding unnecessary information. When users create a new
collection, for example, they can choose either “New” or “Advanced
New”, where the former hides all the technical options which
beginners may not understand. This allows them to work on the
tool without consulting a lot of documentation.

In the area of learning to use the system, the same result was
observed. SpidersRUs has the highest mean score in every question.
On the contrary, Greenstone has the lowest scores, except in
remembering names and use of commands, for which Greenstone
scored higher than Alkaline. In addition, the p-values are generally
very small (most of them are less than 0.01), which shows the
statistical significance of the high mean values of SpidersRUs.
Table 1
Overall reactions to the tools (ALK: Akaline, GRN: Greenstone, SPD: SpidersRUs).

Item ALK GRN SPD ALK vs. SPD
(t-test p-value)

GRN vs. SPD
(t-test p-value)

Overall impression 5.75 2.32 6.07 0.3753 b0.0001
User friendliness 5.50 2.43 6.00 0.2700 b0.0001
Being interesting 5.07 2.68 5.96 0.0339 b0.0001
Ease of use 5.14 4.25 6.52 0.0115 0.0014
Powerfulness 5.74 4.39 6.22 0.1993 0.0002
Flexibility 5.78 3.82 5.89 0.8342 0.0006
Average 5.50 3.32 6.11 0.0942 b0.0001
We believe that a major explanation of the high scores of SpidersRUs
is the design to allow beginners to use the simpler version of the user
interface, which contains less technical information. In addition, each
stepof the searchenginedevelopmentprocess is shownonadifferent tab
in themain interface: Collection, Spidering, Indexing, and Search Service.
This step-by-step approach is easier to follow, even for beginners.

The last part of the QUIS measures was system capabilities, in
which SpidersRUs again scored the highest in every question, except
in system reliability. While the differences between SpidersRUs and
Greenstone are significant for all items, it is not the case for the
comparison between Alkaline and SpidersRUs. In particular, the p-
values are larger than 0.05 for four items, showing that SpidersRUs'
scores are not significantly higher than those of Alkaline.

One barrier that hindered SpidersRUs from getting a significantly
higher score was that the tool was designed to print out error messages
when it encountered program exceptions. For example, in the spidering
process, the tool has to fetch a number ofWebpages from the Internet. In
case any of these pages fail to load due to network problems (e.g., server
not responding, traffic congestion), some exception errors (e.g.,
UnknownHostException) are directly displayed in the message window
without further explanations. While users who know about these
messages would understand the tool is still working fine, others could
consider these messages a sign of malfunction of the tool.

5.3.3. Qualitative comments
We included several open-ended questions asking for areas of

potential improvements in each of the three tools. For Alkaline, which
only had a command-based interface, most participants suggested
that a graphical user interface should be used to make the tool more
user-friendly. There were also a few comments on the speed of the
tool. For example, a participant complained that the tool indexing was
too slow and another suggested that better multi-threading imple-
mentation could help improve its performance.

For Greenstone, the majority of participants complained about the
slow spidering process, as too much data was fetched from a single
seed. Some participants suggested the tool include an option that
allows users to specify the amount and types of data to be fetched
from a single site.



Table 2
Four QUIS standard measures.

Item ALK GRN SPD ALK vs. SPD
(t-test p-value)

GRN vs. SPD
(t-test p-value)

Screen layout and sequence
Characters on the computer screen 5.50 4.50 6.79 0.0193 b0.0001
Highlighting on the screen simplifies task 4.86 4.75 6.36 0.0202 0.0036
Organization of information on screen 5.36 4.93 6.52 0.0216 0.0020
Sequence of screens 5.50 5.11 6.75 0.0177 0.0012
Average 5.30 4.82 6.60 0.0117 0.0002

Terminology and system information
Use of terms throughout system 5.56 5.11 6.48 0.0159 0.0064
Terminology on screen is related to the task you are doing 5.32 4.57 6.54 0.0032 0.0003
Position of messages on screen 5.57 4.93 6.54 0.0295 0.0007
Messages on screen which prompt user for input 5.04 5.21 6.64 0.0013 0.0015
Computer keeps you informed about what it is doing 5.50 5.25 6.54 0.0080 0.0065
Error messages 4.89 4.61 6.04 0.0082 0.0039
Average 5.31 4.95 6.46 0.0010 0.0003

Learning to use the system
Learning to operate the system 5.14 4.79 6.75 0.0018 0.0004
Exploring new features by trial and error 5.21 4.39 6.43 0.0090 0.0001
Remembering names and use of commands 5.07 5.54 6.68 0.0010 0.0118
Tasks can be performed in a straight-forward manner 5.18 5.14 6.79 0.0016 0.0018
Help messages on the screen 5.36 5.29 6.57 0.0021 0.0072
Supplemental reference materials 5.25 4.96 6.32 0.0311 0.0192
Average 5.20 5.02 6.59 0.0006 0.0005

System capabilities
System speed 6.33 2.25 6.41 0.8584 b0.0001
System reliability 6.30 3.11 6.22 0.8700 b0.0001
System tends to be noisy/quiet 5.63 4.18 6.27 0.0894 0.0002
Correcting your mistakes 5.04 3.46 5.46 0.3275 0.0007
Experienced and inexperienced users' needs are taken into consideration 4.96 4.59 6.42 0.0017 0.0010
Average 5.65 3.52 6.16 0.1333 b0.0001

381M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
Lastly for SpidersRUs, comments were generally about adding
more features to the tool. In the spidering process, for example, a
participant would like to see the option to delete a seed from the list. A
few participants also suggested adding more configurable options so
they had more control during the process.

6. Guidelines for graphical user interface design

The general idea to make a software tool usable is to provide an
intuitive and self-explanatory user interface. In other words, users
should not find it necessary to consult manuals before they can
complete simple tasks provided by the tool. By considering the
designs of Greenstone and SpidersRUs and the evaluation results, this
section lists some basic design guidelines to improve the usability of
such tools. It also explains why SpidersRUs is a preferred tool in terms
of usability. We focus our discussion here on SpidersRUs and
Greenstone since Alkaline does not provide a graphical user interface
during the search engine development process.

6.1. Focus each screen on related tasks only

By comparing the three tools in the user study, we can give a few
suggestions on how these tools can be improved. Firstly, offering too
many functions in a tool may negatively affect its usability.
Greenstone is a tool withmany advanced options. Though Greenstone
offersmore options than SpidersRUs in some aspects, such as indexing
downloaded files, it obtained lower scores on average on all the QUIS
measures. The problem is that putting too many options on the same
screen can confuse users who do not find them necessary. We suggest
that in order to avoid confusion, all the features and options on each
screen of the user interface should be related to the same task. For
example, in Greenstone, after creating a new collection, users would
have to provide a list of seed URLs (see Fig. 3). The page contains text
fields for entering the URLs, and also some descriptions on how files
are downloaded from FTP and HTTP servers.

SpidersRUs makes use of tabs to divide the various available
features into groups, where each group contains features related to
the same task. Under the “Spidering” tab (Fig. 12), for example, there
are the necessary functions such as “Add Seeds” and “Start”. There is
also the “Advanced” button which lets users specify more detailed
spider parameters.

6.2. Make it easy to handle multiple collections

Users often need to create multiple collections. It is desirable for
users to manage all these collections easily. In SpidersRUs, the list of
collections is shown on the left (Fig. 11). Users can switch to any
collection by clicking on it, which means they do not have to leave the
current collection. In Greenstone, however, users need to exit from
any opened collection in order to go back to the first step (see Fig. 2)
and then open an existing collection.

6.3. Hide advanced options

While it is desirable to provide more advanced options in a tool,
showing too many options on the same screen can easily confuse users.
Consider the two screenshots for SpidersRUs shown in Figs. 12 and 13.
The advanced options are not shown in the main page. They are
accessible using the “Advanced” button. This prevents general users from
getting frustrated by the options they may not find necessary.

6.4. Make the sequence of required steps clear

If there is a pre-condition for a particular task, the tool should
make it clear to users what the pre-condition is and how it can be
achieved. Tools involving that kind of requirements often employ the



382 M. Chau, C.H. Wong / Decision Support Systems 48 (2010) 369–382
use of wizards tomake the order of each step clear. For example, when
creating a chart, spreadsheet tools often use wizards to guide users
through the different steps such as selection of chart design and data
source.

Both Greenstone and SpidersRUs try to guide users through the
different steps in developing a search engine. However, there is a
minor difference which makes SpidersRUs more user-friendly. In
Greenstone, most of the buttons are available right at the beginning
(Fig. 3), which could be confusing because users would not know
what the next step should be. In addition, users can even select “Build
Collection” when there are no files in a collection, which would
merely create an empty collection. On the other hand, in SpidersRUs
the “Indexing” and “Search Service” tabs are both disabled when the
“Spidering” step has not been completed (Fig. 11). This will show
users more clearly where they are in the process.

7. Conclusions and future directions

In this paper, we reviewed three different tools for building topic-
specific search engines and discussed their unique features which
made them useful for different users. We then tested the usability of
each tool using a survey based on the QUIS. As we have observed from
the results of the survey, SpidersRUs outperformed the others with
statistical significance in most areas that we covered in the
questionnaire. In particular, SpidersRUs was highly favored for its
user interface design, whichmade it significantly better than the other
two tools in such areas as screen layout and sequence, terminology
and system information, and learning to use the system. On the other
hand, there were some areas in which SpidersRUs did not stand out as
much, particularly in system capability.

While our study was conducted on university undergraduate
students, it would be worthwhile to find out how other types of users
compare the three tools. A group of programmers, for example, may
find command-driven tools more convenient and thusmay not favor a
graphical interface. A class of high school students, on the other hand,
may find that understanding how Web spiders work is challenging
and none of the tools would stand out from their point of view. In that
case, a similar system that provides, for example, a step-by-step guide
of building search engines may easily stand out even if it does not
provide as many other features as the three tools we have considered.

Future work will be conducted in several directions. First, we are
planning to further improve the user interface of our tool based on the
issues identified. Moreover, it would be interesting to compare the
tools for other user groups. Lastly, we explore the possibility of
extending the tool to work with Web 2.0 contents such as blogs.

Acknowledgments

This project has been supported in part by a Seed Funding for Basic
Research grant from the University of Hong Kong.We thank Hsinchun
Chen, Yilu Zhou, Jialun Qin, Chunju Tseng, Chiayung Hsu, William Lau,
and all the participants for their contribution to this project.

References

[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, S. Raghavan, Searching the Web,
ACM Transactions on Internet Technology 1 (1) (2001) 2–43.

[2] D. Bainbridge, I.H. Witten, Greenstone digital library software: current research,
Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries, Tuscon,
AZ, USA, 2004, p. 416-416.

[3] C.M. Bowman, P.B. Danzig, U. Manber, F. Schwartz, Scalable Internet resource
discovery: research problems and approaches, Communications of the ACM,
August 37 (8) (1994) 98–107.

[4] S. Chakrabarti, M. van den Berg, B. Dom, Focused Crawling: A New Approach to
Topic-Specific Web Resource Discovery, Proceedings of the 8th International
World Wide Web Conference, Toronto, Canada, 1999, May 1999.

[5] M. Chau, H. Chen, in: N. Zhong, J. Liu, Y. Yao (Eds.), Web Intelligence, Springer-
Verlag, February 2003, pp. 197–217.
[6] M. Chau, H. Chen, Comparison of three vertical search spiders, IEEE Computer 36
(5) (2003) 56–62.

[7] M. Chau, H. Chen, J. Qin, Y. Zhou, Y. Qin,W.K. Sung, D. McDonald, Comparison of two
approaches to building a vertical search tool: a case study in the nanotechnology
domain, Proceedings of The Second ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL'02), Portland, Oregon, USA, July 14–18, 2002, pp. 135–144.

[8] M. Chau, J. Qin, Y. Zhou, C. Tseng, H. Chen, SpidersRUs: automated development of
vertical search engines in different domains and languages, Proceedings of the
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'05), Denver, Colorado,
USA, June 7–11, 2005, pp. 110–111.

[9] M. Chau, J. Qin, Y. Zhou, C. Tseng, H. Chen, SpidersRUs: creating specialized search
engines in multiple languages, Decision Support Systems 45 (3) (2008) 621–640.

[10] H. Chen, M. Chau, D. Zeng, CI Spider: a tool for competitive intelligence on the
Web, Decision Support Systems (DSS) 34 (1) (2002) 1–17.

[11] H. Chen, H. Fan, M. Chau, D. Zeng, Testing a cancer meta spider, International
Journal of Human-Computer Studies 59 (5) (2003) 755–776.

[12] H. Chen, A.M. Lally, B. Zhu, M. Chau, HelpfulMed: intelligent searching for medical
information over the Internet, Journal of the American Society for Information
Science and Technology 54 (7) (2003) 683–694.

[13] F.C. Cheong, Internet agents: spiders, wanderers, brokers, and bots, New Riders
Publishing, Indianapolis, Indiana, USA, 1996.

[14] J. Chin, V. Diehl, K. Norman, Development of an instrument measuring user
satisfaction of the human–computer interface, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Washington, D.C., USA,
1988, pp. 213–218.

[15] D. Czarnecki, A. Deitsch, Java Internationalization, O'Reilly & Associates,
Sebastopol, California, USA, 2001.

[16] B.D. Harper, K.L. Norman, Improving user satisfaction: the questionnaire for user
interaction satisfaction version 5.5, Proceedings of the 1st Annual Mid-Atlantic
Human Factors Conference, 1993, pp. 224–228.

[17] B. Ives, M.H. Olson, J.J. Baroudi, The measurement of user information satisfaction,
Communications of the ACM 26 (10) (1983) 785–793.

[18] S. Lawrence, C.L. Giles, Inquirus, the NECI meta search engine, Proceedings of the 7th
International World Wide Web Conference, Brisbane, Australia, 1998, pp. 95–105.

[19] F. Menczer, Complementing search engines with online Web mining agents,
Decision Support Systems 35 (2003) 195–212.

[20] G. Pant, P. Srinivasan, Learning to crawl: comparing classification schemes, ACM
Transactions on Information Systems, Oct 2005.

[21] G. Salton, Developments in Automatic Text Retrieval. 1991, Science, vol. 253. no.
5023, 1991, pp. 974–980.

[22] L. Sheble, 2006. Greenstone User Survey: Technical Report. School of Library and
Information Science, University of North Carolina, June 2004, available at: http://
www.ils.unc.edu/~sheble/greenstone/survey-report.html.

[23] I.H. Witten, R.J. McNab, S.J. Boddie, D. Bainbridge, Greenstone: a comprehensive
open-source digital library software system, Proceedings of the ACM Digital
Libraries Conference, San Antonio, Texas, USA, 2000.

[24] I.H. Witten, D. Bainbridge, S.J. Boddie, Greenstone: open-source DL software,
Communications of the ACM 44 (5) (2001) 47.

[25] I.H. Witten, D. Bainbridge, A retrospective look at Greenstone: lessons from the
first decade, Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital
Libraries, Vancouver, BC, Canada, 2007, pp. 147–156.

[26] A.B. Zhang, I.H. Witten, T.A. Olson, L. Sheble, Greenstone in practice: implementa-
tions of an open source digital library system, Proceedings of American Society for
Information Science and Technology Annual Meeting, Charlotte, North Carolina,
USA, October, 2005, pp. 769–794.

Michael Chau is an Assistant Professor and the BBA(IS)/BEng(CS) Coordinator in the
School of Business at the University of Hong Kong. He received his Ph.D. degree in
management information systems from the University of Arizona and a bachelor
degree in computer science and information systems from the University of Hong Kong.
His current research interests include information retrieval, Web mining, data mining,
knowledge management, electronic commerce, and security informatics. He has
published more than 70 research articles in leading journals and conferences, including
IEEE Computer, Journal of the America Society for Information Science and Technology,
Decision Support Systems, and Communications of the ACM. More information can be
found at http://www.business.hku.hk/~mchau/.

Cho Hung Wong is a Research Assistant in the School of Business at the University of
Hong Kong. He received his Bachelor of Business Administration degree in information
systems from the University of Hong Kong and his Master of Science degree in
computing science from Imperial College London. His research interests include search
engine, data mining, and human computer interaction.

http://www.ils.unc.edu/~sheble/greenstone/survey-report.html
http://www.ils.unc.edu/~sheble/greenstone/survey-report.html
http://www.business.hku.hk/~mchau/

	Designing the user interface and functions of a search engine development tool
	Introduction
	Related work
	Components of a search engine development tool
	Existing tools

	Research questions
	System design
	Spidering
	Indexing
	Searching
	User interface
	Creating a new project
	Spidering
	Indexing
	Search service


	Evaluation
	Overview of the study
	The Questionnaire for User Interaction Satisfaction (QUIS)
	Results of the study
	Overall reactions to the tools
	Four QUIS standard measures
	Qualitative comments


	Guidelines for graphical user interface design
	Focus each screen on related tasks only
	Make it easy to handle multiple collections
	Hide advanced options
	Make the sequence of required steps clear

	Conclusions and future directions
	Acknowledgments
	References




